Colloquium
Unravelling the Mysteries of Neutrinos
Dr. Stephen Parke Fermilab Neutrinos are the most numerous massive particles in the Universe. Their masses are very tiny, no larger than one millionth the mass of the electron. Are they like all the known massive fermions, being four component particles, or are they a new type of fermion never seen before, a two component fermion? Are there only only three neutrinos or are there more species of neutrinos? Of the three neutrinos we know of, we have determined part of the massing pattern but not the completely pattern.
Explaining the Global Warming Theory
Dr. Joseph P. Straley University of Kentucky Explaining the implications of science to contemporary public issues is an important part of our job. As an example I will give an introduction to the global warming issue.
Higgs Discovery: Implications for Particle Physics - 2 Nov. 2012
The LHC has recently discovered a Higgs-like resonance with a mass of about 125 GeV. It may be the missing element of the so-called Standard Model of particle physics. This model was proposed a few decades ago, and, after the inclusion of neutrino masses, describes in an accurate way all measured observables not involving gravity. We shall discuss what are the possible implications of the Higgs Discovery for particle physics and, in particular, for theoretical and experimental physics High Energy Physics in the coming years.