Sp Tpstat Thry: Prac In Stats Collab
Topics to be selected by STA faculty. May be repeated to a maximum of nine credits.
Topics to be selected by STA faculty. May be repeated to a maximum of nine credits.
This course will involve students in small consulting projects intended to illustrate practical biostatistical problems.
Basic principles of statistical consulting including how to manage a consulting session, how to formulate and solve problems and how to express results both orally and in writing. Students will be expected to analyze data from a current consulting project. Lecture, two hours; laboratory, two hours per week.
Simple random sampling, statistics and their sampling distributions, sampling distributions for normal populations; concepts of loss and risk functions; Bayes and minimax inference procedures; point and interval estimation; hypothesis testing; introduction to nonparametric tests; regression and correlation.
Introduction to principles of statistics with emphasis on conceptual understanding. Students will articulate results of statistical description of sample data (including bivariate), application of probability distributions, confidence interval estimation and hypothesis testing to demonstrate properly contextualized analysis of real-world data.
Introduction to principles of statistics with emphasis on conceptual understanding. Students will articulate results of statistical description of sample data (including bivariate), application of probability distributions, confidence interval estimation and hypothesis testing to demonstrate properly contextualized analysis of real-world data.
Introduction to principles of statistics with emphasis on conceptual understanding. Students will articulate results of statistical description of sample data (including bivariate), application of probability distributions, confidence interval estimation and hypothesis testing to demonstrate properly contextualized analysis of real-world data.
Introduction to principles of statistics with emphasis on conceptual understanding. Students will articulate results of statistical description of sample data (including bivariate), application of probability distributions, confidence interval estimation and hypothesis testing to demonstrate properly contextualized analysis of real-world data.
Introduction to principles of statistics with emphasis on conceptual understanding. Students will articulate results of statistical description of sample data (including bivariate), application of probability distributions, confidence interval estimation and hypothesis testing to demonstrate properly contextualized analysis of real-world data.
Set theory; fundamental concepts of probability, including conditional and marginal probability; random variables and probability distributions (discrete and continuous); expected values and moments; moment-generating and characteristic functions; random experiments; distributions of random variables and functions of random variables; limit theorems.