Skip to main content

New Eye-tracking Technology for Addiction Research

Alcohol is the most commonly used addictive substance in the United States, according to the National Council on Alcoholism and Drug Dependence (NCADD). One in every 12 adults, 17.6 million people, suffer from alcohol abuse or dependence. Several million more engage in risky, binge drinking patterns that could lead to alcohol problems. Looking into the reasons individuals become addicted to alcohol is why Dr. Mark Fillmore came to the University of Kentucky 17 years ago.

Naff Symposium

 

Schedule of Events - March 31, 2017

8:00 a.m. Registration & Continental Breakfast

Gallery, W.T. Young Library
8:50 a.m. Welcome
9:00 a.m. John A. Rogers, PhD

Materials for Biodegradable Electronics

Auditorium, W.T. Young Library
10:00 a.m. Break (refreshments available)
10:30 a.m. Zhenan Bao, PhD

Skin-Inspired Organic Electronic Materials and Devices

Auditorium, W.T. Young Library
11:30 a.m. Lunch & Break
1:00 p.m. George Malliaras, PhD

Interfacing with the Brain using Organic Electronics

Auditorium, W.T. Young Library
2:00 - 2:30 p.m. Coffee Break & Poster Session Set-up
2:30 - 3:15 p.m.

Alon Gorodetsky PhD, Naff Young Investigator

Dynamic Materials Inspired By Cephalopods

Auditorium, W.T. Young Library

3:15 - 4:30 p.m. Poster Session

Jacobs Science Building

For additional information, click here.

Date:
-
Location:
W. T. Young Library

Protein-carbohydrate recognition phenomena illustrated through simulation and thermodynamic calculations

Protein-carbohydrate recognition phenomena illustrated through simulation and thermodynamic calculations

 

Christina M. Payne, Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY

 

Carbohydrates are the most abundant biological molecules on Earth and play important roles in metabolism, cell wall structure, and cellular-level processes; they also happen to be one of the most structurally diverse natural substrates, constructed from a variety of chemically distinct monosaccharides and glycosidic linkages. In response to this diversity, carbohydrate-binding proteins have evolved many different structural approaches to enable recognition of complex carbohydrate substrates. Molecular simulation and free energy calculations, coupled with structural and biochemical observations, can provide extraordinary resolution of molecular-level protein-carbohydrate recognition mechanisms. In this talk, I describe two recent studies wherein we used molecular modeling to reveal the underpinnings of experimentally-observed protein-carbohydrate recognition phenomena. In the first example, we will examine the recognition mechanisms of b-sandwich carbohydrate binding modules (CBMs), a non-catalytic domain of carbohydrate-active enzymes. Counterintuitively, our results suggest these CBMs accommodate cello-oligomers in a bi-directional fashion, and the approximate structural symmetry of the substrate enables such promiscuity. In the second example, we will look at the substrate recognition mechanisms of a mammalian glycoprotein and biomarker, YKL-40, associated with chronic inflammatory diseases and a multitude of cancers. Identification of the lectin’s physiological ligand and biological function has proven experimentally difficult. Using a multifaceted computational approach, we evaluated the feasibility of binding several different polysaccharide and collagen peptide ligands; hyaluronan was revealed as the likely physiological ligand, consistent with associated in vivo expression levels. In general, our approaches reveal valuable fundamental insights into the complex solid and soluble carbohydrate substrate recognition mechanisms of biomolecules, the findings of which hold considerable promise in advancing lignocellulosic biotechnology, glycome mapping tools, and pharmaceutical antagonist design.

Date:
-
Location:
CP-114

South Korean Graduate Begins Life After UK

By Tiwaladeoluwa Adekunle 

Jeesun Lim is one alumna who thoroughly enjoyed her undergraduate years as an economics major at the University of Kentucky. Holding leadership positions on campus as the secretary and vice president of the Korean Student Association as well as the treasurer of the International Student Council, she found a sense of community and made lasting friendships and connections.

Subscribe to